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Focal Area  
Focal Area 3: Insight gleaned from complex simulated 
data using AI, big data analytics, and other advanced 
methods, including explainable AI and physics- or 
knowledge-guided AI. 

Science Challenge 
An understanding of future evolution in precipitation 
extremes is critical to numerous DOE mission 
questions. Extreme events are by nature short time-scale 
events that are difficult to diagnose in available model 
data. Accurate modeling of extreme events necessarily 
requires high spatial resolution at the storm scale 
locally. However, the environment in which storms grow 
is dependent on global, remote, processes. These complex 
spatiotemporal relationships are impossible to diagnose at 
resolutions required to accurately model storms responsible for extreme precipitation. At exascale, 
climate simulations will produce results at fine enough resolution to investigate these relationships. 
However, the resulting data from these simulations will be far too large to save for post-simulation 
analysis. We advocate for fitting statistical models inside the simulations as they run, a context known as 
in situ, which will facilitate scientific investigations using the full fine-scale data stream. Figure 1 shows 
an example of the type of model we could consider, a Bayesian hierarchical spatial regression model. 
Precipitation extremes at each grid cell are modeled using extreme value distributions. Since extremes 
are rare, fitting models to individual grid cells can result in high variance and poor estimates. Instead, 
the model can be made more robust by smoothing the parameters of the extreme value model across 
space. Additionally, the parameters themselves can be functionally linked to other variables elsewhere in 
the simulation. Thus, we can use the fine-scale data to build more robust models for extremes that link 
extreme behavior to other climate patterns. 
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Fig 1: A Bayesian hierarchical spatial regression model. 
Precipitation at each simulation grid cell is modeled with 
an extreme value distribution who parameters are spatially 
smoothed functionally dependent on variables at other 
spatiotemporal locations (e.g. temp and wind speed at high 
latitudes). 
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Rationale 
The statistical and computational tools for fitting such models are currently missing. In situ analysis is a 
growing area of research, but the current focus is on simple statistical approaches mostly aimed at data 
reduction and often for visualization. Data reduction requires an inevitable coarsening that will make it 
difficult to investigate fine-scale relationships. 

Models like the one in Figure 1 can be used to investigate these relationships, but fitting them in situ 
presents unaddressed challenges. First, the spatial component of these models typically requires 
estimating large correlation matrices that describe the correlation of every point with every point. This is 
computationally challenging. Second, Markov chain Monte Carlo is the gold standard for Bayesian 
approximation accuracy, but is an inherently serial algorithm that cannot scale to distributed 
computational resources. Third, the data in such simulations are also distributed in spatially contiguous 
manner (i.e. the data for a particular region is all contained on a single node), whereas many distributed 
estimation algorithms assume statistically independent batches of data or simply access to the entire data 
set. Finally, the simulation data must be considered in a streaming fashion: each temporal slice of data 
must be ingested as the simulation progresses because it is removed from memory as the simulation 
progresses. 

Narrative 
In order to do statistical analyses such as extreme value regression for precipitation, the above 
difficulties must be addressed. The time is ripe for such work as exascale computing will soon be 
available for DOE use and a number of raw ingredients are being developed in the statistics and 
computer science literature. 

The core of a statistical approach like the one described above is a probabilistic model for spatial data. 
This can be used to model simulation data directly, e.g. a spatial model fit to monthly precipitation 
extremes. However, it is more helpful in the hierarchical structure described above where it can be used 
to do things like describe how parameters of a distribution can vary across space. This is especially 
powerful in the context of precipitation extremes which are rare in any given grid cell or small area. The 
spatial model, by building in the idea that neighboring regions should be similar, can use all of the 
precipitation data in a region to improve the estimation of the extreme value parameters in each grid cell. 

A spatial model of this type will need to use sparsity where possible in order to be tractable in terms of 
computations and storage. It will also need to flexibly model correlation structure that changes across 
space and time. Deep, sparse Gaussian processes offer these advantages. Sparse Gaussian processes 
achieve tractability through the use of a parsimonious set of pseudo-data that to represent the large, 
complete set. In the case of precipitation extremes, this pseudo-data would consist of a small (relative to 
the size of the simulation data) set of locations and extreme value parameters for precipitation that can 
be used to interpolate and predict the extreme value parameters at any desired location. Deep Gaussian 
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processes can flexibly model different spatial correlation structures in different spatial regions. For 
example, this would allow the spatial correlation of precipitation extremes to differ between coastal and 
inland regions, but in smoothly varying manner. These models will need to be extended to handle the 
distributed and streaming nature of in situ processing. Scalability can be improved by using Krylov and 
randomized linear algebra methods. 

Estimation for Bayesian models will also need improvements. Variational inference is well suited to the 
in situ setting. In variational inference, complicated Bayesian posterior distributions are approximated 
using a simpler, but still descriptive class of functions (e.g. multivariate Gaussians). The optimal 
distribution within the class is estimated by using an optimization approach instead of the sampling 
approach of Markov chain Monte Carlo. Often, this optimization uses stochastic approaches to gradient 
descent. Because this approach breaks free from the serial structure of most sampling algorithms, it 
should be extendable to parallel computing resources. There is significant work on applying variational 
inference to settings in which the data arrives sequentially in batches, but further work is needed to make 
these algorithms perform well in the in situ setting in which temporal slices of data arrive in batches of 
size one. Machine learning approaches can aid in this task in a number of ways such as learning 
summaries of the data (e.g. spatial correlation lengths for storm events or simple functional descriptions 
of storm probabilities) that can be used to fit statistical models and by predicting the results of simple 
parts of the statistical estimation. 

Finally, implementation of the modeling and estimation is important. There are obviously many 
questions about the water cycle beyond precipitation extremes and many questions in climate beyond 
those about the water cycle. The modeling and estimation schemes should be released in a toolbox of 
reusable components that can be used to construct new models for new problems. This is a challenge in 
the in situ environment. The toolbox should be easy to use for data and climate scientists without 
needing to program in C or Fortran which are not conducive to data science. Nevertheless, the 
implementation of the statistical modeling should not be a bottleneck so it should match the speed of the 
Fortran or C that underlies the simulation itself. Finally, such a toolbox will need to be easily connected 
to simulations in these languages, including the accessing of data in memory without the need for 
copying. Implementation in Python is an obvious choice due to its ubiquity. However, we advocate for 
the use of the Julia language, which is growing in popularity for precisely the reasons we describe: it is 
both easy for data science programming and can be as fast as the compiled languages it will be 
embedded within. 

Many of these issues are under study as part of ongoing Laboratory Directed Research & Development 
project at Los Alamos National Laboratory. The project is using the DOE’s Energy Exascale Earth 
System Model as a development testbed. Although still in the early stages, this project is demonstrating 
the feasibility of the in situ approach to analyzing climate simulations. 


